Synthesis of 5-Amino and 3,5-Diamino Substituted 1,2,4-Thiadiazoles by I₂-Mediated Oxidative N–S Bond Formation

Bingnan Wang, Yinggao Meng, Yiming Zhou, Linning Ren, Jie Wu, Wenquan Yu,*[®] and Junbiao Chang*

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China

Supporting Information

ABSTRACT: An oxidative N–S bond formation reaction has been established for 1,2,4-thiadiazole synthesis employing molecular iodine as the sole oxidant. The features of the present reaction include no use of transition metals, mild reaction conditions, simple operation, and short reaction time. This versatile synthetic approach is broadly applicable to a variety of imidoyl and guanyl thiourea substrates to produce 5-amino and 3,5-diamino substituted 1,2,4-thiadiazole derivatives, respectively, in an efficient and scalable fashion.

INTRODUCTION

Oxidative N-S bond formation is a useful synthetic approach for the construction of nitrogen- and sulfur-containing frameworks. In recent years, such transformations were accomplished via copper-catalyzed aerobic oxidation¹ and hypervalent iodine(III)-mediated oxidative cyclization.² As an inexpensive and low-toxic reagent, molecular iodine has been successfully employed to construct C-C and C-X (X = N, O, or S) bonds via direct C-H functionalization.³ However, applications of iodine in heteroatom-heteroatom bond formation reactions remain relatively undeveloped. In 2016, Jiang and Li^4 disclosed an intermolecular [3 + 2] heterocyclization for 1,2,3-thiadiazole synthesis by using the combination of I₂ and O₂ as oxidantion sources. Previously, we also described an I₂/KI-enabled oxidative cyclization of Naryl amidines to synthesize 1,5-fused 1,2,4-triazoles via N-N bond formation⁵ (Scheme 1).

Scheme 1. Proposed Route to Access 1,2,4-Thiadiazoles via I_2 -Mediated Oxidative N–S Bond Formation Based on the Previous Work

1,2,4-Thiadiazole is an important sulfur-containing heterocylclic moiety occurring frequently in many compounds with diverse biological and pharmaceutical properties,⁶ such as enzyme inhibitory,⁷ receptor modulation,⁸ antiinflammatory⁹ antibiotic,¹⁰ fungicidal,¹¹ antiulcerative,¹² and antidiabetic activities.¹³ Among the various synthetic methods reported for 1,2,4-thiadiazole preparation,^{6,14} several approaches provide access to the 5-amino substituted derivatives through oxidative cyclization using oxidants^{2a,15,16} (e.g., PIFA, Br₂, and H₂O₂), Cu(II)-catalyzed dehydrogenative coupling,17 thermolysis of N^3 -thiocarbamoylamidrazone ylides,¹⁸ or KF/Al₂O₃-mediated cyclocondensation of amidoximes with thioureas.¹⁹ However, synthetic pathways toward 3,5-diamino-1,2,4-thiadiazoles are rarely reported in the literature.²⁰ The existing methods only allow for the synthesis of N^3 , N^5 -symmetrically substituted derivatives through oxidative annulations of two molecules of the same thiourea precursors. Thus, more general and practical synthetic methods for the preparation of amino substituted 1,2,4-thiadiazoles are still in high demand and would be of great importance to medicinal chemistry research. Encouraged by our previous work⁵ on I₂-mediated heteroatom-heteroatom bond construction, herein we developed a versatile and efficient N-S bond formation reaction to access both 5-amino- and 3,5diamino-substituted 1,2,4-thiadiazole derivatives from readily available precursors (Scheme 1).

RESULTS AND DISCUSSION

The required substrates **3** were readily prepared via the addition reaction of amidines to corresponding isothiocyanates (see Experimental Section). Initially, we took imidoyl thiourea **3b** as the model substrate with which to investigate the I₂-mediated oxidative cyclization for 5-amino-1,2,4-thiadiazole synthesis. The expected product **1b** was formed in absence of base in CH₂Cl₂ at room temperature; however, the conversion was still incomplete after 32 h, giving product **1b** in 89% yield (entry 1, Table 1). Addition of inorganic bases could accelerate the reaction (entries 2–3), with K₂CO₃ resulting in a better yield. Further solvent screening (entries 4–8) suggested that MeCN is the most effective media for this transformation.

 Received:
 April 7, 2017

 Published:
 May 12, 2017

Table 1. Optimization of the Reaction Conditions for the Synthesis of 5-Amino-1,2,4-thiadiazole $1b^a$

^{*a*}Reaction conditions unless specified otherwise: **3b** (0.5 mmol), iodine (0.6 mmol), base (0.75 mmol), solvent (5 mL), and rt. ^{*b*}Isolated yields are given. ^{*c*}In the absence of base.

Nevertheless, both the conversion rate and the yield of the product were affected in MeCN without base (entry 9).

Having established the optimal reaction conditions (entry 8 in Table 1), we sought to examine the substrate scope and the generality of this methodology for thiadiazole synthesis. A range of imidoyl thioureas 3 were subjected to the above oxidative cyclization conditions, and all were smoothly and efficiently converted into the desired 5-amino-1,2,4-thiadiazoles 1 (Scheme 2). Taking the synthesis of 1a as an example, the reaction was successfully conducted on the gram scale. It is compatible with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs) on the N^5 -phenyl ring (\mathbf{R}^{1}) (1a-j). The good functional group tolerance allows for the presence of a carboxylic ester moiety in the substrate, as in 1i. The N^5 -cyclohexylamino-1,2,4-thiadiazole (1k) was also prepared from the corresponding precursor in an excellent yield. Moreover, both 2-aryl and 2-alkyl substituted 5-amino-1,2,4-thiadiazoles (11-u) were synthesized under these mild reaction conditions in high yields. Among them, the 3-(2,6dichlorophenyl)-5-(4-chloroanilino) analogue (1u) has previously been demonstrated with potent fungicidal and squalene epoxidase inhibitory activity.¹¹

Furthermore, this synthetic protocol can be extended to the preparation of 3,5-diamino substituted 1,2,4-thiadiazole derivatives. The required guanyl thiourea substrates 4 were obtained through the addition of guanidines to isothiocyanates (see Experimental Section). Then, I2-mediated oxidative cyclization of these substrates afforded a series of N^3 , N^5 symmetrically and N^3 , N^5 -asymmetrically substituted 3,5-diamino-1,2,4-thiadiazoles (2a-j) in good yields (Scheme 3). The structure of N^5 -mesityl analogue **2e** was further confirmed by X-ray crystallography (see Supporting Information). The present reaction works well with both N-aryl and N-alkyl (\mathbb{R}^1 , R^3 and R^4) substituted guanyl thioureas. It is worth to mention that the substrate bearing no substituents at R³ or R⁴ position was also successfully cyclized into the expected product (2h). In addition, the synthesis of 2h in CH₂Cl₂ gave slightly better than the one in MeCN did, but the former required much longer reaction time.

On the basis of these experimental results along with our previous work of I_2 -mediated oxidative N–N bond formation,⁵

Article

^{*a*}Reaction conditions: **3** (0.5 mmol), iodine (0.6 mmol), K₂CO₃ (0.75 mmol), MeCN, rt, and 15 min (isolated yields are given). ^{*b*}The yield of gram-scale synthesis (5 mmol). ^{*c*}Ar = 4-methylphenyl.

a tentative reaction mechanism for this intramolecular N–S formation reaction is proposed (Scheme 4). Taking the formation of thiadiazole 1a as an example, the base-promoted oxidative iodination of substrate 3a generates a plausible iodo species **A**. Then the S–I bond in iodide **A** cleaves, and consequently an ammonium ion B is formed via a S_N2' -type cyclization of **A** with a new N–S bond formed. Finally, the subsequent deprotonation by base affords the 5-amino-1,2,4-thiadiazole framework 1a.

CONCLUSIONS

In summary, we have established an I₂-mediated oxidative N–S bond formation reaction for 1,2,4-thiadiazole synthesis. This practical and transition-metal-free synthetic approach works well with a wide range of imidoyl and guanyl thiourea substrates and can be safely conducted on the gram scale. The features such as high efficiency, mild reaction conditions, simple operation, and short reaction time make it an attractive alternative for the preparation of 5-amino-1,2,4-thiadiazoles. Moreover, for the first time, this synthetic method provides a direct access to both N^3 , N^5 -symmetrically and N^3 , N^5 -asymmetrically substituted 3,5-diamino-1,2,4- thiadiazole derivatives. Scheme 3. Substrate Scope for 3,5-Diamino-1,2,4-thiadiazole Synthesis^{*a*}

^{*a*}Reaction conditions: 4 (0.5 mmol), iodine (0.6 mmol), K_2CO_3 (0.75 mmol), MeCN, rt, and 15 min (isolated yields are given). ^{*b*}The yield of the reaction preformed in CH₂Cl₂ for 16 h.

Scheme 4. Proposed Mechanism for the Formation of 1,2,4-Thiadiazole 1a

EXPERIMENTAL SECTION

General Information. ¹H and ¹³C NMR spectra were recorded on a 400 MHz (100 MHz for ¹³C NMR) spectrometer. Chemical shift values are given in parts per million (ppm) with tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; hept, heptet; m, multiplet. The coupling constants (*J*) are reported in hertz (Hz). Melting points were determined on a micromelting point apparatus without corrections. Infrared (IR) spectra were obtained on an FT–IR spectrometer. Highresolution mass spectra (HRMS-ESI) were obtained on a Q-TOF mass spectrometer. Flash column chromatography was performed over silica gel 200–300 mesh, and the eluent was a mixture of EtOAc and petroleum ether (PE). CH₂Cl₂ and EtOH was analytical reagent grade and used without any pretreatment.

General Procedure A for the Preparation of Substrates 3. A mixture of an amidine salt (2.0 mmol), the corresponding isothiocyanate (2.2 mmol), and K_2CO_3 (414 mg, 3.0 mmol) in CH_2Cl_2 (10 mL) (for 3n and 3s, EtOH was used) was stirred at room temperature for 12 h, then quenched with H_2O (10 mL), and extracted with CH_2Cl_2 (15 mL \times 3). The combined organic layer was dried over anhydrous Na_2SO_4 , concentrated, and purified through silica gel column chromatography to afford the substrate 3.

General Procedure B for the Preparation of Substrates 4. A mixture of an guanidine salt (2.4 mmol), the corresponding isothiocyanate (2.0 mmol), and K_2CO_3 (553 mg, 4.0 mmol) in EtOH (10 mL) was stirred at room temperature for 12 h (for 4f–i, it

was performed at 70 °C for 3 h), and then concentrated under reduced pressure. The resulting residue was treated with H₂O (15 mL) and extracted with EtOAc (15 mL \times 3). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified through silica gel column chromatography to give the substrate 4.

General Procedure C for the Synthesis of Products 1 and 2. A stirred solution of the substrates 3 or 4 (0.5 mmol) in MeCN (5 mL) was treated with iodine (153 mg, 0.6 mmol) and K_2CO_3 (104 mg, 0.75 mmol) in sequence, and then stirred at room temperature for 15 min. The reaction was quenched with 5% Na₂S₂O₃ (5 mL), diluted with H₂O (10 mL), and extracted with EtOAc (15 mL × 3). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated, and then purified through silica gel column chromatography to afford the product 1 or 2.

N,3-*Diphenyl-1,2,4-thiadiazol-5-amine* (**1***a*). Eluent: EtOAc/PE 10:90; yield: 126 mg, 99%; white solid, mp 174–176 °C (lit^{2a} 170–173 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 8.22–8.20 (m, 2H), 7.45–7.39 (m, 5H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 180.6, 169.2, 139.1, 132.8, 130.2, 129.9, 128.6, 128.0, 124.4, 118.4; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₁₂N₃S 254.0746, found 254.0746.

3-Phenyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (**1b**). Eluent: EtOAc/PE 17:83; yield: 132 mg, 99%; white solid, mp 153–155 °C (lit²¹ 156–157 °C) ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.20–8.18 (m, 2H), 7.44–7.43 (m, 3H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.3, 169.2, 136.6, 134.6, 132.8, 130.4, 130.2, 128.6, 128.0, 119.0, 20.9; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₅H₁₄N₃S 268.0903, found 268.0899.

3-Phenyl-N-(m-tolyl)-1,2,4-thiadiazol-5-amine (1c). Eluent: EtOAc/PE 17:83; yield: 132 mg, 99%; off-white solid, mp 113–114 °C (lit^{2a} 110–113 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.21–8.19 (m, 2H), 7.44–7.42 (m, 3H), 7.28–7.25 (m, 1H), 7.03– 7.01 (m, 1H), 6.96–6.94 (m, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 169.3, 140.0, 139.1, 132.9, 130.2, 129.6, 128.6, 128.1, 125.2, 119.5, 115.3, 21.4; HRMS (m/z) [M + H]⁺ calcd. for C₁₅H₁₄N₃S 268.0903, found 268.0906.

3-Phenyl-N-(o-tolyl)-1,2,4-thiadiazol-5-amine (1d). Eluent: EtOAc/PE 17:83; yield: 132 mg, 99%; white solid, mp 173–175 °C (lit^{2a} 168–171 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.13–8.11 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.41–7.25 (m, 5H), 7.18 (t, *J* = 7.2 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 182.9, 169.7, 137.8, 132.9, 131.5, 130.5, 130.0, 128.5, 127.9, 127.6, 126.2, 121.0, 17.7; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₅H₁₄N₃S 268.0903, found 268.0897.

N-(4-Methoxyphenyl)-3-phenyl-1,2,4-thiadiazol-5-amine (1e).^{2a} Eluent: EtOAc/PE 17:83; yield: 140 mg, 99%; white solid, mp 144–145 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 10.84 (s, 1H), 8.17–8.15 (m, 2H), 7.56–7.50 (m, 5H), 7.02–7.00 (m, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 180.1, 169.0, 155.8, 133.8, 133.3, 130.6, 129.2, 128.0, 120.2, 115.1, 55.8; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₅H₁₄N₃OS 284.0852, found 284.0856.

N-(4-Chlorophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine (**1f**). Eluent: EtOAc/PE 25:75; yield: 141 mg, 98%; white solid, mp 197–199 °C (lit^{2a} 194–196 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 11.14 (s, 1H), 8.20–8.18 (m, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.53–7.47 (m, 5H); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.3, 169.0, 139.2, 133.1, 130.7, 129.7, 129.2, 128.1, 126.8, 119.7; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₁₁ClN₃S 288.0357, found 288.0357.

N-(4-lodophenyl)-3-phenyl-1,2,4-thiadiazol-5-amine (**1g**).^{2a} Eluent: EtOAc/PE 17:83; yield: 186 mg, 98%; white solid, mp 210–212 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.12 (s, 1H), 8.20–8.18 (m, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.54–7.52 (m, 5H); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.2, 169.0, 140.1, 138.4, 133.1, 130.7, 129.2, 128.1, 120.4, 86.4; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₁₁IN₃S 379.9713, found 379.9693.

4-((3-Phenyl-1,2,4-thiadiazol-5-yl)amino)benzonitrile (1h).^{2a} Eluent: EtOAc/PE 25:75; yield: 134 mg, 96%; white solid, mp 194–196 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.48 (s, 1H), 8.23–8.21 (m, 2H), 7.89 (s, 4H), 7.56–7.53 (m, 3H); ¹³C NMR (100 MHz, DMSO-

The Journal of Organic Chemistry

 d_6) δ 179.0, 169.1, 143.9, 134.3, 133.0, 130.8, 129.3, 128.1, 119.6, 118.2, 104.6; HRMS $(m/z)~[{\rm M}+{\rm H}]^+$ calcd. for ${\rm C}_{15}{\rm H}_{11}{\rm N}_4{\rm S}$ 279.0699, found 279.0697.

Methyl-4-((3-phenyl-1,2,4-thiadiazol-5-yl)amino)benzoate (1i).^{2a} Eluent: EtOAc/PE 33:67; yield: 153 mg, 98%; off-white solid, mp 213-215 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.41 (s, 1H), 8.24–8.21 (m, 2H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.56–7.53 (m, 3H), 3.85 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.1, 169.1, 166.2, 144.2, 133.0, 131.4, 130.8, 129.3, 128.1, 123.7, 117.5, 52.4; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₆H₁₄N₃O₂S 312.0801, found 312.0804.

N-Mesityl-3-phenyl-1,2,4-thiadiazol-5-amine (1j). Eluent: EtOAc/ PE17:83; yield: 145 mg, 98%; off-white solid, mp 199–200 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (br, s, 1H), 8.05–8.03 (m, 2H), 7.38–7.28 (m, 3H), 6.98 (s, 2H), 2.33 (s, 3H), 2.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 186.2, 169.9, 138.8, 136.3, 133.9, 133.0, 129.9, 128.3, 127.7, 21.1, 17.9; IR (film) 2916(w), 1568(m), 1470(m), 1427(m), 1340(m), 1118(m), 703(s), 688(s); HRMS (*m/z*) [M + H]⁺ calcd. for C₁₇H₁₈N₃S 296.1216, found 296.1217.

N-Cyclohexyl-3-phenyl-1,2,4-thiadiazol-5-amine (1k). Eluent: EtOAc/PE 17:83; yield: 128 mg, 99%; white solid, mp 126–127 °C (lit¹⁸ 120–122 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.17–8.14 (m, 2H), 7.44–7.41 (m, 3H), 6.10 (br, s, 1H), 3.25–3.18 (m, 1H), 2.10–2.07 (m, 2H), 1.77–1.74 (m, 2H), 1.65–1.62 (m, 1H), 1.43–1.19 (m, SH); ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 169.8, 133.2, 129.9, 128.5, 127.9, 56.2, 32.6, 25.3, 24.6; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₁₈N₃S 260.1216, found 260.1216.

N,3-*Di*-*p*-tolyl-1,2,4-thiadiazol-5-amine (11). Eluent: EtOAc/PE 20:80; yield: 138 mg, 98%; white solid, mp 180–182 °C (lit¹⁹ 180–182 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (br, s, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.14–7.11 (m, 2H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 169.5, 140.2, 136.7, 134.4, 130.4, 130.3, 129.3, 127.9, 118.9, 21.5, 20.9; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₆H₁₆N₃S 282.1059, found 282.1065.

3-(4-Bromophenyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (1m). Eluent: EtOAc/PE 17:83; yield: 171 mg, 99%; white solid, mp 238–239 °C (lit^{2a} 241–243 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 10.97 (s, 1H), 8.09 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.9, 168.0, 137.9, 132.7, 132.4, 132.3, 130.3, 130.0, 124.1, 118.4, 20.9; HRMS (m/z) [M + H]⁺ calcd. for C₁₅H₁₃BrN₃S 346.0008, found 346.0018.

N-(*p*-tolyl)-3-(4-(trifluoromethyl)phenyl)-1,2,4-thiadiazol-5amine (1*n*). Eluent: EtOAc/PE 17:83; yield: 161 mg, 96%; off-white solid, mp 234–236 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.03 (s, 1H), 8.36 (d, *J* = 8.4 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 180.1, 167.5, 137.8, 136.7, 132.8, 130.5 (q, *J*_{C-F} = 32.0 Hz), 130.3, 128.7, 126.3, (q, *J*_{C-F} = 3.8 Hz), 124.6 (q, *J*_{C-F} = 270.6 Hz), 118.5, 20.9; IR (film) 3238(w), 1561(m), 1444(m), 1314(m), 1129(vs), 1103(m), 709(s), 658(s); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₆H₁₃F₃ N₃S 336.0777, found 336.0795.

3-(Pyridin-4-yl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (**10**). Eluent: EtOAc/PE 25:75; yield: 132 mg, 99%; off-white solid, mp 241–243 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.06 (s, 1H), 8.76–8.75 (m, 2H), 8.05–8.04 (m, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 180.3, 167.0, 151.0, 139.7, 137.7, 132.9, 130.3, 121.9, 118.5, 20.9; IR (film) 2854(w), 1640(m), 1445(s), 1359(s), 806(m), 698(vs); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₁₃N₄S 269.0855, found 269.0855.

3-(1H-Pyrazol-1-yl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (1p).^{2a} Eluent: EtOAc/PE 50:50; yield: 127 mg, 99%; light yellow solid, mp 200–203 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.29 (d, J =2.8 Hz, 1H), 7.52 (s, 1H), 7.24–7.16 (m, 4H), 6.39 (t, J = 2.4 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 183.0, 158.4, 142.5, 136.4, 135.7, 130.4, 129.1, 121.0, 108.0, 21.0; HRMS (m/z) [M + H]⁺ calcd. for C₁₂H₁₂N₅S 258.0808, found 258.0811.

3-Methyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (1q).¹⁶ Eluent: EtOAc/PE 17:83; yield: 103 mg, 98%; off-white solid, mp 144–146 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 2.43 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 182.3, 169.5, 137.0, 134.9, 130.4, 119.7, 20.9, 19.1; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₀H₁₂N₃S 206.0746, found 206.0741.

3-Cyclopropyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (1r). Eluent: EtOAc/PE 17:83; yield: 115 mg, 99%; off-white solid, mp 135–136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 2.34 (s, 3H), 2.14–2.07 (m, 1H), 1.09–1.05 (m, 2H), 0.99–0.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 174.5, 136.8, 134.5, 130.3, 119.1, 20.9, 13.6, 8.9; IR (film) 2918(w), 1556(m), 1440(m), 1359(s), 814(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₂H₁₄N₃S 232.0903, found 232.0901.

3-Isopropyl-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (1s).²² Eluent: EtOAc/PE 17:83; yield: 110 mg, 94%; off-white solid, mp 114–115 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (br, s, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 3.06 (hept, *J* = 7.2 Hz, 1H), 2.35 (s, 3H), 1.31 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 181.9, 178.4, 137.0, 134.7, 130.4, 119.6, 32.7, 21.4, 20.9; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₂H₁₆N₃S 234.1059,found 234.1061.

3-(tert-Butyl)-N-(p-tolyl)-1,2,4-thiadiazol-5-amine (1t). Eluent: EtOAc/PE 17:83; yield: 121 mg, 98%; off-white solid, mp 125–126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (br, s, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 2.34 (s, 3H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 181.0, 180.9, 136.9, 134.2, 130.3, 118.8, 36.9, 29.4, 20.8; IR (film) 2961(w), 1608(m), 1558(s), 1361(s), 816(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₃H₁₈N₃S 248.1216, found 248.1217.

N-(4-Chlorophenyl)-3-(2,6-dichlorophenyl)-1,2,4-thiadiazol-5amine (1u).¹⁷ Eluent: EtOAc/PE 20:80; yield: 154 mg, 93%; light yellow solid, mp 216–217 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.22 (br, s, 1H), 7.33–7.29 (m, 3H), 7.20 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 182.3, 164.8, 137.8, 135.2, 132.7, 130.9, 130.2, 129.7, 128.0, 120.9; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₉Cl₃N₃S 355.9577, found 355.9590.

*N*³,*N*⁵-*Diphenyl-1,2,4-thiadiazole-3,5-diamine* (2a).^{20b} Eluent: EtOAc/PE 17:83; yield: 131 mg, 98%; white solid, mp 203–205 °C (lit¹ 203–205 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (s, 1H), 9.74 (s, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.26 (t, *J* = 8.4 Hz, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.89 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 176.8, 162.7, 141.5, 140.4, 129.7, 129.0, 123.2, 121.0, 118.2, 117.3; HRMS (*m/z*) [M + H]⁺ calcd. for C₁₄H₁₃N₄S 269.0855, found 269.0867.

N³-Phenyl-N⁵-(*p*-tolyl)-1,2,4-thiadiazole-3,5-diamine (**2b**).²³ Eluent: EtOAc/PE 17:83; yield: 123 mg, 87%; white solid, mp 172–173 °C; ¹H NMR (400 MHz, CDCl₃ mixture of tautomers, *peaks of the minor one) δ 8.41* (br, s, 0.2H), 8.33 (s, 0.8H), 7.55 (d, *J* = 7.6 Hz, 1.6H), 7.43–7.39 (m, 0.8H), 7.33–7.29 (m, 2.4H), 7.21–7.19 (m, 2.2H), 7.16–7.14* (m, 0.2H), 7.11–7.08 (m, 2H), 6.99 (t, *J* = 7.6 Hz, 0.8H), 2.35 (s, 2.4H), 2.30* (s, 0.6H); ¹³C NMR (100 MHz, CDCl₃ mixture of tautomers) major isomer δ 179.5, 162.2, 140.0, 136.5, 134.6, 130.4, 129.1, 121.9, 119.1, 117.6, 20.9; minor isomer δ 178.9, 161.9, 139.0, 137.5, 131.5, 129.9, 129.5, 124.5, 118.6, 117.9, 20.7; HRMS (*m*/z) [M + H]⁺ calcd. for C₁₅H₁₅N₄S 283.1012, found 283.1011.

*N*³-*Phenyl*-*N*⁵-(*m*-tolyl)-1,2,4-thiadiazole-3,5-diamine (**2c**). Eluent: EtOAc/PE 17:83; yield: 130 mg, 92%; white solid, mp 161–162 °C; ¹H NMR (400 MHz, CDCl₃ mixture of tautomers, *peaks of the minor one) δ 8.48 (br, s, 1H), 7.55 (d, *J* = 7.6 Hz, 1.8H), 7.43–7.26 (m, 4.3H), 7.22–7.15* (m, 0.7H), 7.02–6.97 (m, 3.4H), 6.81* (d, *J* = 7.6 Hz, 0.1H), 2.36 (s, 2.6H), 2.33* (s, 0.4H); ¹³C NMR (100 MHz, CDCl₃ mixture of tautomers) major isomer δ 178.9, 161.6, 140.1, 139.9, 138.86, 129.7, 129.1, 125.4, 122.0, 119.4, 117.6, 115.6, 21.5; minor isomer δ 178.8, 161.7, 139.8, 138.92, 129.9, 128.9, 124.5, 123.0, 118.6, 118.3, 114.8, 21.6; IR (film) 3080(w), 2960(w), 1515(s), 1439(s), 1362(m), 727(m), 676(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₅H₁₅N₄S 283.1012, found 283.1017.

 N^{5} -(4-Methoxyphenyl)- N^{3} -phenyl-1,2,4-thiadiazole-3,5-diamine (**2d**). Eluent: EtOAc/PE 17:83; yield: 139 mg, 93%; off-white solid, mp 187–189 °C; ¹H NMR (400 MHz, DMSO- d_{6}) δ 10.51 (s, 1H),

The Journal of Organic Chemistry

9.68 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.25 (t, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.88 (t, *J* = 7.6 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 177.3, 162.7, 155.7, 141.6, 133.8, 129.0, 120.9, 120.4, 117.3, 114.9, 55.8; IR (film) 3080(w), 2961(w), 1536(s), 1440(s), 751(m), 695(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₅H₁₅N₄OS 299.0961, found 299.0974.

*N*⁵-*Mesity*^{*J*}-*N*³-*phenyI*-1,2,4-thiadiazole-3,5-diamine (**2e**). Eluent: EtOAc/PE 17:83; yield: 146 mg, 94%; off-white solid, mp 166–167 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.70 (br, s, 1H), 9.58 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 6.96 (s, 2H), 6.84 (t, *J* = 7.6 Hz, 1H), 2.25 (s, 3H), 2.18 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 162.5, 140.1, 138.8, 136.3, 133.0, 129.8, 129.0, 121.8, 117.6, 21.1, 17.9; IR (film) 3264(w), 1517(s), 1445(m), 1335(m), 742(s), 689(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₇H₁₉N₄S 311.1325, found 311.1334.

*N*⁵-*Cyclohexyl*-*N*³-*phenyl*-1,2,4-*thiadiazole*-3,5-*diamine* (**2f**). Eluent: EtOAc/PE 17:83; yield: 129 mg, 94%; white solid, mp 128–129 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.50 (s, 1H), 8.18 (d, *J* = 7.2 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 2H), 6.83 (t, *J* = 7.2 Hz, 1H), 3.47 (br, s, 1H), 1.99–1.95 (m, 2H), 1.74–1.71 (m, 2H), 1.59–1.56 (m, 1H), 1.32–1.17 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 181.2, 162.4, 140.2, 129.0, 121.6, 117.4, 55.7, 32.9, 25.3, 24.6; IR (film) 3267(w), 2927(w), 1520(vs), 1443(m), 1336(m), 748(s), 697(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₄H₁₉N₄S 275.1325, found 275.1312.

*N*³-(2-*Methyl*-5-*nitrophenyl*)-*N*⁵-*phenyl*-1,2,4-*thiadiazole*-3,5-*diamine* (**2g**). Eluent: EtOAc/PE 25:75; yield: 141 mg, 86%; yellow solid, mp 235–237 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.83 (s, 1H), 9.03 (br, s, 2H), 7.80–7.78 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 177.5, 162.6, 146.6, 140.3, 140.2, 136.2, 131.6, 129.7, 123.3, 118.3, 116.9, 114.2, 18.8; IR (film) 3268(w), 2929(w), 1521(vs), 1444(m), 1333(m), 750(m), 735(m); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₅H₁₄N₅O₂S 328.0863, found 328.0862.

*N*⁵-*Phenyl*-1,2,4-*thiadiazole*-3,5-*diamine* (**2h**).²¹ Eluent: EtOAc/ PE 33:67; yield: 78 mg, 81% (yield of the reaction in CH₂Cl₂ for 16 h: 88 mg, 92%); off-white solid, mp 210–212 °C (lit¹ 214–215 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 7.53–7.51 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.26 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 177.7, 167.2, 140.6, 129.6, 122.7, 117.9; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₈H₉N₄S 193.0542, found 193.0545.

*N*³-*Methyl*-*N*⁵-*phenyl*-1,2,4-*thiadiazole*-3,5-*diamine* (2*i*).²⁴ Eluent: EtOAc/PE 25:75; yield: 100 mg, 97%; off-white solid, mp 137–138 °C (lit¹ 137–138 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (br, s, 1H), 7.41–7.39 (m, 2H), 7.18 (d, J = 7.2 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H),4.91 (br, s, 1H), 2.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.5, 166.9, 139.2, 129.8, 124.1, 118.4, 29.9; HRMS (*m*/*z*) [M + H]⁺ calcd. for C₉H₁₁N₄S 207.0699, found 207.0698.

 N^3 , N^3 -Dimethyl- N^5 -phenyl-1,2,4-thiadiazole-3,5-diamine (2j). Eluent: EtOAc/PE 25:75; yield: 107 mg, 97%; off-white solid, mp 176−177 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (br, s, 1H), 7.37 (t, *J* = 8.0 Hz, 2H), 7.19−7.17 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 3.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.1, 168.1, 139.3, 129.7, 123.8, 118.1, 38.8; IR (film) 2925(w), 1533(s), 1465(m), 1381(m), 1220(m), 755(m), 689(s); HRMS (*m*/*z*) [M + H]⁺ calcd. for C₁₀H₁₃N₄S 221.0855, found 221.0853.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.7b00814.

Copies of ${}^{1}H$ and ${}^{13}C$ NMR spectra of products 1 and 2 (PDF)

X-ray structures and data of compound 2e (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: wenquan_yu@zzu.edu.cn (W.Y.)

*E-mail: changjunbiao@zzu.edu.cn (J.C.)

ORCID 6

Wenquan Yu: 0000-0002-3711-0006

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521316004) and the National Natural Science Foundation of China (Nos. 81330075 and 81302637) for financial support.

REFERENCES

(1) (a) Zhu, H.; Yu, J. T.; Cheng, J. Chem. Commun. 2016, 52, 11908.
(b) Lee, C.; Wang, X.; Jang, H. Y. Org. Lett. 2015, 17, 1130. (c) Chen, F. J.; Liao, G.; Li, X.; Wu, J.; Shi, B. F. Org. Lett. 2014, 16, 5644.
(d) Wang, Z.; Kuninobu, Y.; Kanai, M. J. Org. Chem. 2013, 78, 7337.
(2) (a) Mariappan, A.; Rajaguru, K.; Merukan Chola, N.; Muthusubramanian, S.; Bhuvanesh, N. J. Org. Chem. 2016, 81, 6573.
(b) Anand, D.; Patel, O. P. S.; Maurya, R. K.; Kant, R.; Yadav, P. P. J. Org. Chem. 2015, 80, 12410. (c) Rattanangkool, E.; Krailat, W.; Vilaivan, T.; Phuwapraisirisan, P.; Sukwattanasinitt, M.; Wacharasindhu, S. Eur. J. Org. Chem. 2014, 2014, 4795. (d) Ma, W. B.; Li, S. N.; Zhou, Z. H.; Shen, H. S.; Li, X.; Sun, Q.; He, L.; Xue, Y. Eur. J. Org. Chem. 2012, 2012, 1554.

(3) (a) Zi, W.; Zuo, Z.; Ma, D. Acc. Chem. Res. 2015, 48, 702.
(b) Zhao, J.; Gao, W.; Chang, H.; Li, X.; Liu, Q.; Wei, W. Youji Huaxue 2014, 34, 1941. (c) Ren, Y.-M.; Cai, C.; Yang, R.-C. RSC Adv. 2013, 3, 7182. (d) Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. Chem. - Eur. J. 2012, 18, 5460. (e) Veisi, H. Curr. Org. Chem. 2011, 15, 2438.

(4) Fan, W.; Li, Q.; Li, Y.; Sun, H.; Jiang, B.; Li, G. Org. Lett. 2016, 18, 1258.

(5) Song, L.; Tian, X.; Lv, Z.; Li, E.; Wu, J.; Liu, Y.; Yu, W.; Chang, J. J. Org. Chem. **2015**, 80, 7219.

(6) Castro, A.; Castaño, T.; Encinas, A.; Porcal, W.; Gil, C. Bioorg. Med. Chem. 2006, 14, 1644.

(7) (a) Dahlin, J. L.; Nissink, J. W.; Strasser, J. M.; Francis, S.;
Higgins, L.; Zhou, H.; Zhang, Z.; Walters, M. A. J. Med. Chem. 2015, 58, 2091. (b) Martinez, A.; Alonso, M.; Castro, A.; Pérez, C.; Moreno, F. J. J. Med. Chem. 2002, 45, 1292.

(8) (a) Göblyös, A.; de Vries, H.; Brussee, J.; Ijzerman, A. P. J. Med. Chem. 2005, 48, 1145. (b) van den Nieuwendijk, A. M. C. H.; Pietra, D.; Heitman, L.; Göblyös, A.; Ijzerman, A. P. J. Med. Chem. 2004, 47, 663. (c) Fawzi, A. B.; Macdonald, D.; Benbow, L. L.; Smith-Torhan, A.; Zhang, H.; Weig, B. C.; Ho, G.; Tulshian, D.; Linder, M. E.; Graziano, M. P. Mol. Pharmacol. 2001, 59, 30.

(9) Unangst, P. C.; Shrum, G. P.; Connor, D. T.; Dyer, R. D.; Schrier, D. J. J. Med. Chem. **1992**, 35, 3691.

(10) Iizawa, Y.; Okonogi, K.; Hayashi, R.; Iwahi, T.; Yamazaki, T.; Imada, A. Antimicrob. Agents Chemother. **1993**, *37*, 100.

(11) Kumita, I.; Niwa, A. J. Pestic. Sci. 2001, 26, 60.

(12) Kharimian, K.; Tam, T. F.; Leung-Toung, R. C.; Li, W. PCT Int. Appl. WO1999051584A1, 1999.

(13) Johnstone, C.; Mckerrecher, D.; Pike, K. G.; Waring, M. J. PCT Int. Appl. WO2005121110A1, 2005.

(14) Frija, L. M. T.; Pombeiro, A. J. L.; Kopylovich, M. N. Eur. J. Org. Chem., Early View, DOI: 10.1002/ejoc.201601642.

(15) Zyabrev, V. S.; Rensky, M. A.; Rusanov, E. B.; Drach, B. S. Heteroat. Chem. 2003, 14, 474.

(16) Kurzer, F.; Tertiuk, W. J. Chem. Soc. 1959, 2851.

(17) Kim, H.-Y.; Kwak, S. H.; Lee, G.-H.; Gong, Y.-D. Tetrahedron 2014, 70, 8737.

The Journal of Organic Chemistry

(18) Smith, R. F.; Feltz, T. P. J. Heterocycl. Chem. 1981, 18, 201.

(19) Dürüst, Y.; Yıldırım, M.; Aycan, A. J. Chem. Res. 2008, 2008, 235.

(20) (a) Castro, A.; Castaño, T.; Encinas, A.; Porcal, W.; Gil, C. Bioorg. Med. Chem. 2006, 14, 1644. (b) Castro, A.; Encinas, A.; Gil, C.; Bräse, S.; Porcal, W.; Pérez, C.; Moreno, F. J.; Martínez, A. Bioorg. Med. Chem. 2008, 16, 495. (c) Mamaeva, E. A.; Bakibaev, A. A. Tetrahedron 2003, 59, 7521.

(21) Kihara, Y.; Kabashima, S.; Uno, K.; Okawara, T.; Yamasaki, T.; Furukawa, M. *Synthesis* **1990**, *11*, 1020.

(22) Bracha, P.; Lovich, M. Israeli Patent, IL35743A, 1974.

(23) Akiba, K.-Y.; Tsuchiya, T.; Ochiumi, M.; Inamoto, N. Tetrahedron Lett. 1975, 16, 455.

(24) Kurzer, F. J. Chem. Soc. 1956, 2345.